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ABSTRACT 
We consider an M*/G/1 queuing system where the withies at customers are assumed to arrive the system 
according to a compound Poisson process. As soon as the system becomes empty the server takes a vacation 
for a random length of time called vocation time to do other jobs, which is uninterruptible. After returning 
from that vacation, there are two possibilities viz. (i) he keeps on taking vacation till he finds at least one 
unit in the quene (multiple vacations) or(ii) he may lake only one vacation between two successive busy 
periods (single vacation). The steady state ehaviour of this M*/G/1 queuening system is derived by an 
analytic approach to study the queue size distribution at a stationary (random) as well as a departure point 
of time under multiple vacation policy. Also, attempts have been made to obtain the queue size distribution 
of a more generalised model at a departure point to cover both the cases multiple and single section. 
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INTRODUCTION 
The queueing system when the server becomes idle is not new. Miller (1964) was the first to 
study such a model, where the server is unavailable during some random length of time 
(referred to as vacation) for the M/G/1 queueing system. The M/G/1 queueing models of 
similar nature hae also been reported by a number of authors, since Levy and Yechiali (1975) 
included several types of generalizations of the classical M/G/1 queueing system. These 
generalizations are useful in model building in many real life situations such as digital 
communication, computer network and production inventory system (Takagi, 1991 and 
Doshi1986, 1990). 
The major general result fir vacation model is the stochastic decomposition result, which allows 
the system to be analysed by considering separately the distribution of the queue size with no 
vacation and the additional queue size he to vacation. This important result was first 
established by Futermann and Cooper 91985D for generalized vacation as well as multiple 
vacation models, where the servers keeps on taking a sequence of vacations of random length 
till it finds at least one unit in the system to start each busy period for the M/G/1 queueing 
system. Later Doshi (1986) extended this result for the single vacation model through a 
different approach where the server takes exactly one vacation at the end of each busy period.In 
this model if the server finds no units after returning from a vacation, he stays in the system 
waiting fora unit to arrive. 
Shanti Kumar (1988) showed that the queue size decomposition holds even for the M/G/1 
models with bulk arrival, reneging, balking etc. in terms of unfinished work in the system 
Boxma and Groenendijk (1987) proved the decomposition result for the M/G/1 type vacation 
models Recently Doshi (1990b) and Leung (1992) extended the results of Boxma and Groendijk 
(1987). Harris and Marchal (1988) and Shantikumar (1988) proved the stochastic 
decomposition result for unfinished work in the system and additional delay due to the vacation 
times respectively in more general setting. 
At present, however, most studies are devoted to batch arrival queues with vacation because of 
its interdisciplinary character. Considerable efforts have devoted to study these models by 
Baba(1986). Lee and Srinivasan (1989).Leee,at at., (1994, 1995).Borthakur and Chaudhary 
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(1997) and Choudhary (1998, 2000) among others. However, the recent progress of M*/G/1 
type queueing models of this nature have been served by Chae and lee (1995) and Mehdi 
(1997). 
In this chapter, we first study the steady state behaviour of the queue size distribution for this 
M*/G/1 queue with multiple vacation policy at the stationary point of time as well as departure 
point of time through an analytical approach. Also we show that the departure point queue size 
distribution of this model can be expressed as convolution of the distributions of three 
independent random variables, one of which of the queue size of the standard m*/G/1 queue 
without vacations. Efforts have also been made to interpret other two random variables 
properly. Using these interpretations we then derived the probability generating function (pgf) 
of the departure point queue size distribution of a more generalizd M*/G/1 type vacation 
models. Moreover, we obtain some important performance measures of these models, which 
may lead to remarkable simplification when solving the rather complicated vacation models of 
this nature. 
 
M*/G/1 QUEUEING SYSTEM WITH MULTIPLE VACATIONS: 
In this section, we first write the system state equations for its stationary (random) queue size 
(including the one in service, if any) distribution by treating elapsed service time and vacation 
time as supplementary variables. We now define the following notations and probabilities: 
 

λ = rate of arrival of batch 
X  = size of arrival (a random variable) 
 

  Pr[ ], 1kC X k k    
  X(z)= pgt of X 
 

B  = Service time random variable 
V  = Vacation tie random variable 
B(X), V(X)  =   Probability distribution functions of B and  V 
B(x)V(x) = Laplace Stieltjes transformations of B(X), V(X) 
Further it is assumed that- 
 

  V(0) = 0  V( ) = 1  B(0) = 0  B( ) = 1 
 

And that V(x) and B(x) are continuous at X = 0. 
So that, 
   ( )( )

[1 ( )]
dV XV X dx

V X



 

and  ( )( )
[1 ( )]

dB XB X dX
B X




 

are the first order differential equations of V and B respectively. 
Let N0(t) be the queue size at the time t and 0( )B t  be the elapsed service time at time t. Further, 
we consider that 0( )V t  is the elapsed vacation time at t. Let us now introduce the following 
random variables. 
 

  0, if the server is idle at time ( )
1, if the server is busy at time 

t
Y t

t


 


 

So that the supplementary variables 0( )B t  and 0( )V t  are introduced in order to obtain a 
bivariate Morkov Process 

0{ ( ). ( )}N t L t , where 
 

  
0

0
( ) if ( ) 0( )
( ) if ( ) 1

V t Y t
L t

B t Y t

  


 

We define- 



Sharma & Chaudhary                                        Vol. 22 (2): July 2017                           Nature & Environment 

Page 46 

  0
0, ( ) lim Pr[ ( ) , ( ) ;m Qn

P X dX N t m L t V t


  
0( ) ]X V t X dX   ;  0, 0X m   

and  0
1, ( ) lim Pr[ ( ) , ( ) ( );n Qn

P X dX N t n L t B t


   0( ) ]X B t X dX   ; 0, 1X n   
 

Now, the analysis of this queueing process at the stationary point of time can be done by using 
forward Kolmogorov equations, which under the steady state conditions can be written as: 
 

  
0,0 0,0( ) [ ( )] ( ) 0; 0d P X V X P X X

dx
       
 

              ...(1) 

  
0,0 0,0 0,

1
( ) [ ( )] ( ) ( ); 0, 1

n

k n k
k

d P X V x P X C P X X n
dx 



         
 


 

           ...(2) 

  
1, 1, 1, 1

1
( ) [ ( )] ( ) ( ); 0, 1

n

n n k n k
k

d P X b x P X C P X X n
dx  



         
 


 

           ...(3) 

 

  λ
0,0 0,0 1,10 0

( ) ( ) ( ) ,( )P V X P X dX b X P X dX
 

      
           ...(4) 

Where, 
  

0,0 0,0( )
n

P P X dX


   
 

These conditions are to be solved under the following boundary conditions at X=0. 
 
  0, 0 0, 0(0)P P                    ...(5) 

  0, (0) 0; 1nP n                   ...(6) 

  1, 0, 1 10 0
(0) ( ) ( ) ( ) ( ) ; 1n n nP V X P X dX b X P X dX n 

                 ...(7) 

and the normalization condition 
 

  
0,1 1,0 00 1

( ) ( ) 1n
n n

P X dX P X dX
  

 
   

    

           ...(8) 

Let us define the following probability generating functions. 
 

  
0 0

0
( , ) ( )n

n
n

P X z z P X



  ;   | | 1z   

  
0 0

0
(0, ) (0)n

n
n

P z z P



    | | 1z   

  
1 1,

1
( , ) ( )n

n
n

P X z z P X



    | | 1z   

  
1 1,

1
(0, ) (0)n

n
n

P z z P



     | | 1z   

 

Proceeding in the usual manner with equations (1), (2), (3), (5) and (6), we get 
 

  [1 ( )]
0 0( , ) (0; )[1 ( )] X z XP X z P z V X e    

        [1 ( )]
0, 0[1 ( )] X z XP V X e     0x                ...(9) 

and 
  [1 ( )]

1 1( ; ) (0; )[1 ( )] X z XP X z P z B X e                          ...(10) 
Thus, we have 
 

  
0 0 0, 00
( ) ( , ) [1 * ( ( ))] / [1 ( )]P z P X z dX P V b X z X z


       
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Similarly from equation (7) and (4), we have 
 

   1 0, 0(0, ) [1 * ( ( ))] / [ * ( ( )) ]P z zP V X z B X z z           
 

And therefore we get 
 

  0, 0
1 1

0

. [1 * ( ( ))][1 * ( ( ))]
( ) ( , )

* [( ( )) ]
z P V X z B X z

P z P X z dX
B X z z

        
 

     

 

Using the condition (8) and taking the limit of 
0 1[ ( ) ( )]P z P z , as 1z  , we get 

 

  
0,0

1
( )

P
E V
 




 

 

Where ( ) ( 1)E X     is the utilization factor of the system and ( ) ( 1)E B    . 
Let 0 1( ) ( ) ( )P z P z P z   be the probability generating function of the stationary queue size 

distribution of this M*/G/1 multiple vacation model, then 
 
 

  (1 )(1 ) *[( ( ))] 1 *[( ( ))]( )
*[( ( )) ] ( )( ( ))

z B X z V X zP z
B X z z E V X z

            
            

= P(M*/G/l; z)S(z)        ...(11) 

 

where P(M*/G/1; Z) is the  of the stationary point queue size distribution of the standard 
M*/G/1 queue without vacation. This is well known Pollaczek-Khinchine formula for M*/G/1 
queue 

   (1 )(1 ) *[( ( ))]
*[( ( )) ]

z B X z
B X z z

       
      

 

 

and is the  of the number of units that arrive during the residual life of the vacation  time. 
 

   1 *[( ( ))]
( )( ( ))
V X z

E V X z
    

     
 

 

Differentiating equation (11) with respect to  and taking the limit as 1z  , we get 
 

  
1

( )
S

z

dP zL
dz 

    
 

   2 2 2 2( ) ( ) [ ( ) ( ) ( ) ( ) / 2(1 )]RE x E V E B E x E B E X X            
 

where 2( ) ( ) / 2 ( )RE V E V E V  is the mean residual vacation time and 
sL is the mean of the 

stationary queue size distribution of this model. 
 
CONCLUSION 
From equation 11 we observe that the stationary queue size distribution of M*/G/1 queue with 
multiple vacation is the convolution of distributions of two independent random variables on of 
which is the stationary queue size of the standard M*/G/1 queue without vacation and the other 
one is the number of units that arrive during the residual vacation time. 
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